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Full-coverage film cooling. Part 2. 
Prediction of the recovery-region hydrodynamics 
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Mechanical Engineering Department, Stanford University, CA 94305 

(Received 31 January 1979 and in revised form 29 January 1980) 

Hydrodynamic data are reported in the companion paper (Yavuzkurt, Moffat & Kays 
1980) for a full-coverage film-cooling situation, both for the blown and the recovery 
regions. Values of the mean velocity, the turbulent shear stress, and the turbulence 
kinetic energy were measured at various locations, both within the blown region and 
in the recovery region. The present paper is concerned with an analysis of the recovery 
region only. Examination of the data suggested that the recovery-region hydro- 
dynamics could be modelled by considering that a new boundary layer began to grow 
immediately after the cessation of blowing. Distributions of the Prandtl mixing length 
were calculated from the data using the measured values of mean velocity and turbu- 
lent shear stresses. The mixing-length distributions were consistent with the notion of 
a dual boundary-layer structure in the recovery region. The measured distributions 
of mixing length were described by using a piecewise continuous but heuristic fit, 
consistent with the concept of two quasi-independent layers suggested by the 
general appearance of the data. This distribution of mixing length, together with a set 
of otherwise normal constants for a two-dimensional boundary layer, successfully 
predicted all of the observed features of the flow. The program used in these predictions 
contains a one-equation model of turbulence, using turbulence kinetic energy with 
an algebraic mixing length. The program is a two-dimensional, finite-difference 
program capable of predicting the mean velocity and turbulence kinetic energy profiles 
based upon initial values, boundary conditions, and a closure condition. 

1. Introduction 
Most of the work in the literature at the present time concentrates upon measure- 

ments or predictions of either the film-cooling effectiveness or the surface heat transfer 
coefficient within the full-coverage region. It has been found generally successful to 
use two-dimensional boundary-layer predictor programs with an augmented mixing- 
length concept to predict the general features of full-coverage film-cooling heat 
transfer, again within the full-coverage region. Little has been done to investigate the 
recovery region, defined as the region of impermeable plate downstream of an array of 
film-cooling holes. It is this region which is the subject of the present work. 

Crawford, Kays & Moffat (1976) give a summary of analytical work in the field of 
full-coverage film cooling. Goldstein et al. (1969) and Ericksen, Eckert & Goldstein 
(1971) used superposition of film-effectiveness data from individual jets to predict 
full-coverage effectiveness, modelling injection as a point heat source. Mayle & 
Camarata ( 1975) developed an improved superposition method to predict their full- 
coverage data. Pai & Whitelaw (1971) and Patankar, Rastogi & Whitelaw (1973) 
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investigated the prediction of wall temperature and effectiveness downstream of 
two- and three-dimensional film-cooling slots. For the two-dimensional slot injection, 
the boundary-layer equations were used together with an augmented mixing-length 
model to  represent the effect of injection. For three-dimensional injection, the 
Navier-Stokes equations were solved numerically by reducing them to elliptic form in 
the lateral plane and t o  parabolic form in the streamwise direction. 

Herring (1975) used a finite-difference method for predicting the flow over a full- 
coverage film-cooled surface. Lateral averaging in the full-coverage region was invoked 
to justify using two-dimensional boundary-layer equations. Terms arising from the 
spanwise averaging were obtained from consideration of the jet/boundary-layer inter- 
action. Predicted velocity profiles were reported but showed some problems in the 
initial regions of injection near the wall. 

Choe, Kays & Moffat (1975) developed a finite-difference method for predicting 
heat transfer with full-coverage film cooling, solving the two-dimensional boundary- 
layer equations. (These equations have a form similar to those given by Herring 1975.) 
Choe et aZ. (1975) used the concept of local averaging, with a different model for the 
injection process, the nonlinear terms, and augmented turbulent mixing. Using an 
augmented mixing length in a one-equation model for turbulence, he successfully 
predicted most of their Stanton number data for low and moderate blowing in the 
full-coverage region. The predictions in the recovery region and for high blowing 
were less accurate. 

Crawford et al. (1976) repeated the conditions covered by Choe et aZ.(1975), using 
a different full-coverage surface, however: 30' slant-hole injection with a staggered 
array of holes. With the injection temperature equal to the wall temperature, the 
Stanton number decreased be low^ the normal flat-plate value and reached a minimum 
at a blowing ratio, M ,  of 0.4. HigherM caused an increase in the Stanton number.For 
the recovery region, downstream of the five-diameter hole array, two distinct data 
trends were observed. For low M the Stanton number began to recover immediately 
from the effects of blowing, while for high M the Stanton number either remained 
constant or dropped throughout the recovery region. This latter behaviour suggested 
that important differences might exist in the recovery-region hydrodynamics. 

Experimental data concerning heat transfer in the recovery region show that the 
current boundary-layer predictor programs do not well handle this region. In  view of 
the probable importance of interrupted film cooling (i.e. an array of holes followed by 
a blank surface, followed by an additional array of holes), it seems important to under- 
stand the recovery region behaviour more thoroughly. In  particular, it  would be 
desirable to be able to deal with the recovery region for the conventional two- 
dimensional boundary-layer predictor program. 

The objective of the present study was to adapt a one-equation model of turbulence 
for the prediction of the hydrodynamic behaviour within the recovery region, based 
upon experimental data concerning the hydrodynamic structure. The experimental 
input upon which the present model is based was taken from the work of Yavuzkurt 
et al. (1977), described in the companion paper (Yavuzkurt et aE. 1980; hereinafter 
referred to as I). 

The present paper begins with the data sets describing mean velocity, TKE, shear 
stress, and mixing length reported in I. For details of the apparatus and the experi- 
mental methods used, readers are referred to I and the thesis of Yavuzkurt et al. (1977). 
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FIGURE 1. Mixing-length distribution in the recovery region (a) for M = 0.4 and ( b )  for 
M = 0.9. - , flat plate; 0, x = 188; A, x = 214; 0, z = 256. 

Figures 1 (a,  b )  are reproduced from I, and show the distributions of mixing-length 
values calculated from the recovery region data sets. These were calculated using the 
spanwise-averaged mean velocity profiles and the spanwise-averaged turbulent shear 
stresses, and serve as the basis for the modelling of the turbulence processes within the 
recovery region. 

The 'hump' in the inner region of the mixing-length distribution for M = 0.9 
(figure 1 b )  suggested the use of a dual boundary-layer model: an inner layer and an 
outer layer. Nothing in subsequent work contradicted this notion, and calculations 
based upon it have proved quite successful in predicting recovery region behaviour. 

Prediction of stream wise evolution of the recovery region boundary layers requires 
initial conditions. These were taken from the data sets of I, using the mean velocity and 
turbulence kinetic energy distributions at the upstream end of the recovery region. 

6 F L P  I01 
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In  the following sections, the theory is evolved, the model described, and results of 
the modelling presented. 

2. General characteristics of a one-equation model of turbulence 
It was desired to develop a one-equation turbulence model (TKE and mixing 

length) for use in an existing two-dimensional boundary-layer program, STAN5 
(Crawford & Kays 1975). The one-equation concept requires an algebraic equation 
for the mixing length. Mixing length profiles were first obtained from the experimental 
profiles 02)) and g )  using purely empirical curve fits to model the behaviour. This 
piecewise model was insertedinto STAN5, and itwas demonstrated that all important 
features of the data were well represented. Each region in the mixing-length profile 
was then interpreted physically and alternative, physically based equations identified. 
This procedure showed that all the important features of the recovery region hydro- 
dynamics could be satisfactorily explained by postulating a two-dimensional boundary 
layer growing inside the thicker initial boundary layer. The following sections present 
the details of these steps. 

2.1. Equations to be solved 
The following equations must be solved to obtain mean velocity and turbulence 
kinetic energy (TKE) profiles. For a two-dimensional, turbulent boundary layer under 
isothermal conditions, a t  ambient temperatures and low speeds, a t  a constant free- 
stream velocity and without any external body forces: 

ai7 aP 
ax ay 
-+- = 0 continuity; 

x momentum; ax 

--Ly-l 
production dissipation difluslon 

The boundary conditions on the momentum equation are 

The equation for TKE is not solved all the way to the wall in STANB, but only to 
y+ = 2A+, where A+ is a measure of sublayer thickness. It is assumed that the flow is 
in local equilibrium (experiments confirm this assumption) below y+ = 2A+, and 
Prandtl's mixing length can be used in this region. The TKE at this point is calculated 
such that at y+ = 2A+ the eddy viscosity obtained from the mixing-length model is 
equal to the one obtained from a one-equation model of turbulence. This condition 
gives the following boundary conditions on TKE : 

Here K is the von KSrmBn constant; K = 0.41. 
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FIGURE 2.  Variation of turbulent Schmidt number through the 
boundary layer, w assumed in this model. 

The following terms must be modelled in (2) and (3) in order to obtain a solvable set 
of equations: n, 9, J .  The term f o r n  will be modelled after Boussinesq (1877) with 

(6) 
a0 an eddy-viscosity model : - 

M a y *  
-u'z.'l = e 

The eddy diffusivity for momentum, eM, will be modelled after Prandtl (1945) and 
Kolmogorov (1 942) : 

K 
(7) 

The term 9, dissipation of TKE, will be modelled as given in Launder & Spalding 
(1972): 

The diffusion of TKE J is also to be modelled as in Launder & Spalding (1 972) : 

using Sc, = eM/eq .  The production of TKE, 9, can be expressed as 

To complete the model, the following constants or functions need to be specified: 
I ,  A,, Bq, Sc,. The term A ,  is the production constant and can be obtained from the 
value of the stress energy ratio, -u1v'/q2, near the wall; it is generally about 0.22 
(Wolfstein 1969). The dissipation constant B, can be evaluated under the condition 
that the production of TKE is equal to its dissipation in the region near the wall. This 
condition gives the following relation: 

- 

A3 
B, = -, K = 0.41. 

K4 ' 

From the above equations, B, = 0.377 is obtained. 
6-2 
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The Schmidt number of TKE, Sc,, is expressed as is shown in figure 2. Ithasavalue 
of 1.75 near the wall and 0.5 near the free stream. Launder & Spalding (1972) suggest 
that for film-cooling applications Sc, should follow a linear distribution from 1.75 near 
the wall down to 0-5 near free stream; however, during the present predictions, the 
distribution shown in the preceding figure was found to work better. The extended 
region of Sc, = 0.5 near free stream played an important role in modeling the correct 
diffusion of TKE near the edge of the momentum boundary layer. The value near the 
wall did not seem to be as important because of the dominant role of production and 
dissipation in this region. 

The last quantity to be modelled to complete the set is the mixing length, 1. Predic- 
tions and data show that all other constants mentioned above have their usual values 
(i.e. the values used for two-dimensional flat-plate boundary predictions). The success 
of predictions depended very strongly on the correct modelling of I, as will be shown 
and discussed in the following sections. 

2.2. Mixing-length model 

The two-layer mixing-length model presented here was developed specifically for the 
recovery region, but should also be applicable (with some modification) to the full- 
coverage region. The full-coverage boundary layer should behave almost like a 
recovery region between the injection rows. 

The following requirements should be met by a mixing-length model for it to have 
at least some limited universality: 
(a) It should be possible to relate the deviations from the two-dimensional mixing 

length to physical events taking place in the flow field. 
( b )  The dynamics of the model should allow it to relax back to a two-dimensional 

flat-plate mixing length after the blowing region. 
The general approach taken in modelling the mixing length will be described in the 

following sections. First the flow structure in the recovery region will be discussed. 
Then each region in the mixing-length profiles will be discussed, and the empirical 
equations will be given, with supporting physical arguments. Figures 1 (a, b )  show the 
mixing-length distributions obtained from the experiments (Yavuzkurt et al. 1977) by 

for two blowing ratios, M = 0.4 and M = 0.9. 
2.2.1. Flow structure in the recovery region. Figure 3 represents the flow in the 

recovery region interpreted as a dual layer. The basic structure is that  of a new two- 
dimensional boundary layer growing inside the old, thick boundary layer. The thick- 
ness of the inner boundary layer is a’, and the thickness of the overall boundary layer 
(thickened by the injection process in the full-coverage region) is 8. I n  the middle 
regions the two boundary layers blend (the cross-hatched area) with the help of 
cumulative jet spread. The region next to the wall is not cross-hatched, however, 
because the processes in this region are completely controlled by the wall. The two- 
dimensional internal boundary layer has an initial thickness a t  the start of the recovery 
region which depends on the upstream conditions (e.g. the blowing ratio). This internal 
boundary-layer growth has been observed by several other experimenters whenever 
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FIGURE 3. Flow structure in the recovery region. 
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FIGURE 4. Mixing-length model and flow structure in the recovery region. 
+ + +, two-dimensional mixing length ; ---, modelled mixing length. 
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there is a sudden change of the surface conditions. For example, Antonia & Luxton 
( 1  972) observed such an internal boundary layer in their experiments on the response 
of a turbulent boundary layer to a step change in surface roughness. 

When the measured mixing-length profiles in figures 1 (a,  a) are examined in the 
light of this model, five distinguishable mixing-length regions can be identified, 
numbered in figure 4. In that same figure, the three distinguishable flow regions are 
shown, labelled I ,  11, and 111. Region I is the near-wall region of the two-dimensional 
internal boundary layer; region I1 is the blend region dominated by cumulative jet 
effects; and region I11 is the outer region, dominated by the outer region of the Chick 
boundary layer. 

2.2.2. Region 1 of the mixing length. The innermost region, very close to the wall where 
1 = ICY, is termed region 1. Experiments show that this region extends up to y/S N 0.14 
for M = 0.4, but only up to y/S N 0-055 for M = 0.9. 

This is the inner region of the new two-dimensional internal boundary layer where 
the length scale is based on the distance from the wall, y. For programming convenience, 
the mixing length and the distance from the wall in all the regions were normalized on 
the total boundary layer of thickness 6. In this region, however, the wall effects are 
dominant and determine the heat transfer regardless of the blowing ratio. The effect 
of blowing is mainly to change the initial thickness of the internal two-dimensional 
boundary layer. The proposed model for this region is: 

where D is the damping function (Van Driest) and (y/S), is the departure point from 
the KY line. This point corresponds to y/S' = A/" for the inner two-dimensional 
boundary layer of thickness 6'. 

The following empirical equation is given for (y/6),: 

( $ ) a = , + c 1 M [ ( 3 - 4 ] ,  A 

where C, = 0-0045 and C, = 37, and A is the outer region mixing-length proportionality 
constant, h = 0.085. It is seen that as M gets large the initial value of 

gets smaller, indicating that a higher blowing ratio destroys the near-wall layer, 
causing a smaller initial thickness for the internal boundary layer. This fits the 
physical situation very well. The constant C, is the number of boundary-layer thick- 
nesses at which reaches the A/" point for the outer boundary layer. In fact, then, 
the recovery is completed. (Antonia (private communication) also supports C, being 
37.) The constant C, controls the rate of recovery of the (y/6), point. 

2.2.3. Region 2 of the mixing length. Experiments show that in this region the mixing 
length is constant and low, compared to the outer region of a two-dimensional flat-plate 
boundary layer of the same thickness. This region is barely visible for M = 0.4 but is 
obvious for M = 0.9. It extends up to about y/S = 0.2 for all stations and corresponds 
to the outer region of the inner boundary layer, where 1 = AS'. Here the eddy size does 
not depend on the distance from the wall, nor does it depend on the total thickness of 
the outer boundary layer. 
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The distance of this region from the outer edge means that the outer length scale 
does not affcxt it. This region does not extend all the way up to y = 6’ for the reasons 
stated below. 

The following empirical equation is proposed: 

This region does not extend all the way up to s’. As soon as the edge of the inner layer 
of the outer boundary layer (y/6 = A/.) is encountered, the length scale begins to be 
affected by the outer length scale of the outer boundary layer. The branch point is 
given as A / K .  

2.2.4. Region 3 of the mixing length. Experiments show that in this region the mixing 
length is still below a two-dimensional flat-plate value. This is also barely visible for 
M = 0.4 but it obvious for M = 0.9. In  this region, the mixing length rises from the 
value in region 2 to 0.085. The region starts around y/S = A/K = 0.2 and extends up 
to y/S 11 0.3 for M = 0.9 and y/6 2: 0.25 for M = 0.4 for the first station. It moves 
away from the wall in the recovery region. 

This is the first section of the blend region of inner and outer boundary layers 
(region I1 in figure 4). Here the length scale changes from the two-dimensional inner- 
layer value to the value in the outer layer in a medium dominated by the jet-flow regime. 

The following empirical equation is given for this region: 

f j ) = a ( s ) + b  for K 

The linear combination is all that is justified and fits the experiments. Here, (Y/S)~ is 
the intersection point of the new mixing-length line and the 1/S = h line. The (y/S), 
point is the effective centre-line of rising jets and moves out in the recovery region as 
the jets spread outwards. This will later be shown quantitatively in $2.4.2. The 
following empirical equation is given for this point: 

(5) i = 9 C 3 M  [G) +c4], 

It has an initial value of A / K  + C,C4 M and an advance rate of C,M(d/S)  in the down- 
stream direction. The initial value increases with M ,  indicating a deeper penetration 
for high blowing, which fits the physics. The values of the constants are 

C3 = 0.0275, C, = 4.0 (19) 

and the equations for coefficients a and b in (17) are 

2.2.5. Region 4 of the mixing length. Experiments show that a region of augmented 
mixing length is located between 0.24 < y/S < 0.37 for M = 0-4 and between 
0.35 < y/S c 0-55 for M = 0.9 a t  the start of the recovery region. This region is wider 
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and higher for M = 0.9 than for M = 0.4.  The augmented region vanishes in the 
recovery regions. 

The augmentation in the mixing length occurs owing to high shear between the 
cumulative jet spread and the outer layer fluid. The maximum in the augmentation 
occurs somewhere between the outer edge of the jet spread and the effective jet 
centre-line. In the case of higher blowing, this region is moved outwards because of the 
greater jet penetration. The augmented region also moves outwards in the downstream 
direction in the recoveIy region, aa jets rise; but a t  the same time it vanishes, as there 
is a decrease in shear between the cumulative jet spread and the outer layer. This is 
discussed further in Yavuzkurt et al. 1977). 

This region was modelled as a parabola, the simplest curve which fits the data: 

and 

( i ) a = c ( $ ) 2 + d ( $ ) + e  

(') = A + for ( s ) ~  < ($ < (!) + W .  (23) 

Here, c,  d and e are constant coefficients; their values depend on end points and will 
be given after the discussion of the end points. The quantity W is the width of the 
augmented region a t  the 1/6 = h level. Based on the experimental evidence, it was 
made a function of blowing ratio M .  Since no better formulation was possible, it was 
expressed as a linear function 

In  figure 4 ,  (l/I3)max is the maximum value of the augmentation. Its decay in the down- 
stream direction was expressed as an exponential function : 

W = C,M. (24) 

( l / S ) m a x , i  is the initial value of augmentation. It is given from the experimental 
evidence, as follows: 

(')max,i = C6M. (26) 

The coefficients for the parabola are given as 

The values of the constants are 

C, = 0.496, C, = 0.435, C, = 0.333. (30) 

2.2.6. Region 5 of the mixing length. Experiments show that in this region the length 
scale is constant, and it is 1/13 = h 2 0.085. The region begins after the augmented 
region and continues up to the free stream for both blowing ratios. 
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This region is the outer layer of the outer boundary layer, where the mixing length 
scales on the total thickness 6. In  this region, the following empirical equation is given: 

(i) = A for ($i + w < (f). 

2.2.7. Comments on the mixing-length model. Except for the usualuniversal valuesof 
K = 0.41 and h = 0.085, seven constants were used to model the mixing length. The 
number of constants looks very large a t  first glance, but when examined more closely 
one can see that this number is reasonable. Three different flow structures are being 
modelled: inner and outer boundary layers and blend region in between, as well as 
their dynamics in the streamwise direction. 

During the prediction process it was observed that the most important constants in 
the mixing-length model were C,, C,, C, and C,. The constants used to specify the 
augmented region (C,, C, and C,) did not prove significant. The augmented region did 
not have much effect on the predictions because it lies in the outer region of the 
boundary layer. It also decays rapidly. During computer experiments with W and 
(l/6)max, changing the values of C, and C, did not affect the results at  all. It is possible 
that the augmented region can be completely eliminated for the recovery region pre- 
dictions, thus reducing the number of constants to four. The constants were obtained 
from the empirical data rather than from computer experiments. Kacker & Whitelaw 
(1970) used five constants to model the mixing length for prediction of wall jet and 
wall-wake flows, which are similar to, but not more complicated than, the recovery 
region of the present full-coverage film-cooled surface. In the present model the 
augmented region is kept for convenience and for easy adaptation of this mixing- 
length model to the full-coverage region where the peak of augmentation moves closer 
to the wall and is important for the prediction of heat transfer. 

In  the recovery region predictions, especially for M = 0.9, the most important 
region of the mixinglengtih, turnedout to be the reduced mixing-length region near the 
wall. Without correct modelling of this region, predictions always failed. The first four 
constants are the important ones in the recovery region predictions. 

It was observed that only regions 2, 3 and 4 show deviations from a usual two- 
dimensional mixing-length model. Region 2 proved especially interesting, because it 
had been thought that the jet mainstream interaction would increase the mixing 
length above the two-dimensional value (Choe et al. 1975; Crawford et at-. 1976). Choe 
et al. and Crawford et al. calculated the mixing length for low blowing and in the full- 
coverage region. They observed that the augmented region (region 4) moved closer 
to the wall and did not observe regions 2 and 3, which are more easily observable for 
high blowing. In  reality, regions 2 and 3 are very important in predictions, as is 
explained in $2.3.1. 

The relaxation to the two-dimensional state takes place in the following manner. As 
the cumulative effects of jets move downstream and diffuse out, they lose their 
strength and the augmentation dies out ( - 36 or 46), but the effective centre-line of the 
jets, the ( Y / & ) ~  point, continues to rise. At the same time the inner boundary-layer 
thickness 6’ grows faster than 6 (6 almost stops growing after the injection stops), and 
finally, when they merge (in approximately 406), the recovery process is complete. 

2.2.8. Comparison of measured and modelled mixing lengths. It is important to 
establish that the heuristic model assembled in the preceding paragraphs does in fact 
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FIQURE 5. Comparisons of the piecewise mixing-length model and the data in the recovery 
region. (a) M = 0.4. ( b )  M = 0.9.-, flat plate. Solid symbols are for the model, open symbols 
are used for the data. 0, z = 188; A ,  2 = 214; 0, z = 256. 

reflect the behaviour of the mixing length derived directly from the experiments. 
Figure 5 compares the piecewise mixing-length model with the data already presented 
in figure 1.  Results are shown both for M = 0.4 and M = 0.9, with the model always 
being represented by the solid symbols and the data always by the open symbols. It is 
evident from inspection of figure 5 that the proposed model captures the principal 
features of the mixing-length distribution and its variation both with blowing and with 
streemwise distance. It next remains to  compare the consequences of using this mixing- 
length distribution with the experimental evidence for mean velocity and turbulence 
kinetic energy distributions. 
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FIGURE 6. Predictions of streamwise mean velocity component, u, and turbulent kinetic energy, 
qa, for M = 0.4. - , prediction; 0 ,  data. 1,  Start of recovery (initial profiles). 2, Recovery 
region, 11th plate. 3, Recovery region, 27th plate. 

3. Predictions 
The mixing-length model, together with the TKE equation, was used as a one- 

equation model of turbulence in the two-dimensional boundary -layer program STAN5 
(Crawford & Kays 1975). Starting with the spanwise-averaged mean velocity and TKE 
profiles a t  the beginning of the recovery region (x = 188 em), very successful predic- 
tions of TKE and the mean velocity profiles for M = 0.4 and M = 0.9 were obtained 
a t  two downstream stations in the recovery region (x = 214 cm, 256 em). 

Figure 6 shows a comparison of the predicted mean velocity and TKE profiles with 
the experimental data for M = 0.4 on the two stations in the recovery region, starting 
with the spanwise-averaged initial profiles. The prediction of mean velocity on plate 11 
(x = 214cm) is somewhat high in the middle region of the boundary layer, but the 
difference lessens by the 27th plate (x = 256 em). For TKE profiles, the predictions are 
somewhat low. These figures show that the model predicts a slightly faster recovery 
to the two-dimensional state than the physical process, but the difference is not that 
great. The reason for lower TKE predictions might be the mixing length. In  figure 5 
the mixing-length model for M = 0.4 is slightly low, compared to measurements, in the 
region 0.15 < y/6 < 0.3. This means that the model results in a smaller production and 
a higher dissipation than the reality, yielding lower TKE values compared to the 
experiment. 

Figure 7 shows a comparison of the mean velocity and TKE profiles with the 
experimental data for M = 0.9 on the two stations in the recovery region, starting with 
the spanwise-averaged initial profiles. The suggested model predicts the M = 0.4 case 
well, and the predictions for the 2M = 0.9 case are excellent. It is important to remember 
that the constants do not change with the blowing ratio. Both cases were predicted 
with the same set of constants for the mixing length. The other constants in the one- 
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FIGURE 7. Predictions of streamwise mean velocity component, 8, and turbulent kinetic energy, 
q2, for M = 0.9. __ , prediction; 0,  data. I ,  Start of recovery (initial profiles). 2, Recovery 
region, 11th plate. 3, Recovery region, 27th plate. 

equation model are the usual ones employed for two-dimensional boundary-layer 
predictions. The authors believe that the model will successfully predict blowing ratios 
up to M = 1.0. Further extrapolation of the model might be dangerous due $0 the 
changing hydrodynamic character of the flows. 

The importance of accounting for the reduced mixing near the wall, when making 
predictions in the recovery region, is demonstrated by figure 8. This figure compares 
the experimental data with the predictions of TKE (in the recovery region on the 27th 
plate for M = 0-9). Predictions were made with two different mixing-length models: 
one of them is the normal two-dimensional flat-plate mixing length, and the other is 
the model developed in this study, which results in a smaller value near the wall. 
The new model predicts perfectly, whereas the usual two-dimensional mixing length 
predicts much higher TKEs almost up to the first half of the boundary layer. The 
reason lies in the relationship between the mixing length and the production and 
dissipation of TKE. Higher mixing lengths increase the production and reduce the 
dissipation, giving rise to higher TKEs. 

The reduced mixing region did not have a significant effect on near-wall velocity 
profiles; however, it is important in heat transfer behaviour because of its influence on 
the turbulence level. 

4. Rationalizing the model 
The empirical curve fits already described do in fact match the boundary layer 

behaviour. The physical arguments are plausible and suggest that the empirical 
relations could be replaced (if desired) by more conventional forms. In  this section 
some possible alternative equations are examined - without changing the physical 
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FIGURE 8. Effect of mixing length on predictions of turbulent kinetic energy; M = 0.9, recovery 
region, 27th plate. 0 ,  data. Predictions : -, present model ; - - -, two-dimensional flat-plate 
mixing length. 

arguments - both for the purpose of testing the physical argument for reasonableness 
of the magnitudes and to take advantage of established forms where possible. 

4.1. The outer edge of the inner boundary layer 

The equation governing the thickness of the inner layer is 

(f), = + 0-0045M [ 6) - 371. 

Using a conventional equation for two-dimensional turbulent boundary-layer growth 
to describe the growth of the internal boundary layer (Schlichting 1968) yields 

&"and ( y / S ) ,  are related as follows: 



174 S.  Yavuzkurt, R. J .  Moffat and W .  M .  Kays 

X ’ P )  

w4 
A 

I \ 

0 N 5  N 12 

M - > 
0.4 Piecewise model 0.028 0.036 0.045 

Boundary-layer formula 0.028 0.033 0.040 

0.9 Piecewise model 0.01 1 0.018 0.028 

Boundary-layer formula 0.011 0.017 0.025 

TABLE 1 

Therefore, 

or 

(35) 

Consequently, if one knows the initial value of IS  and ( y /S ) ,  a t  x‘ = 0, then the initial 6‘ 
can be calculated and xh determined from the formula. After xh is found, the rest of IS’ 
and (y/S), can be obtained from the boundary-layer growth formula. 

I n  equation (33) the value of U, can be used for the value of a since 0 a t  SA,gg is 
never far from U,. For example, for M = 0.9 the velocity profile is so flat that  near 

Jh.99 D N u,. 
For M = 0.4 the initial thickness of this boundary layer is large (because there is less 
disturbance), and again around y N I S ’ ,  u N U,. One might question the use of (33) to 
predict the growth of the inner layer, since it neglecb the effect of the turbulence of the 
outer regions. It seems justified, however, because around 6’ the turbulence levels are 
quite small for both cases studied here (3-5 yo). 

By using 2: U ,  = 16.7ms-l, p = i.2kgm-3, ,u = 0.9 x 10-5kgm-1s-1, the 
virtual origin of the internal boundary layer can be calculated for both cases from 
the initial value of (y/S),. The following values were obtained: 

for M = 0.4, xh = 1.29m; 

for M = 0.9, xh = 0-41m. 

The value of ( x ; ) ~ ~ ~ = , . ~  is greater than ( ~ h ) ~ ~ ~ = , . ~ ,  which is normal because, for low blowing, 
the undisturbed region near the wall is larger. After calculation of virtual origins, the 
comparisons shown in table 1 were obtained between the piecewise model and the 
internal boundary-layer growth formula. As is seen from the comparison, the present 
linear model and the boundary-layer growth results compare quite well. In  fact, when 
one looks a t  the data, the boundary-layer formula seems to  be closer. 

The following changes can be suggested in the present model. Instead of calculating 
( y /S ) ,  from the piecewise linear formula (15), ( y / S ) ,  initial can be calculated, which 
involves only one empirical constant. Then, using 
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(2‘18) 
7 

0 - 5  N 12 
6’ (m) 

M - 7 
0.4 Piecewise model 0.244 0.3 0.37 

Jet-spread formula 0.244 0.3 0.333 

0.9 Piecewise model 0.3 0.424 0.59 

Jet-spread formula 0.3 0.55 0.67 

TABLE 2 

I’ 8.’ . . UutlSl 6Litial can be found, and x’ - [ - 0*37(pum/p)-) ’ 

Other 6‘ can be calculated as follows : 

and 

Here, even though the equation for boundary-layer growth is still empirical, it is more 
universal than the constant supplied in the formula for (y/&),. s o  the formula can 
be reduced to one empirical constant supplied by the present experiments and L more 
universally accepted empirical equation. 

4.2. Comparison of the development of the (y/S),  point with jet spreading theory 

It is argued that the dynamics of the ( Y / S ) ~  point corresponds to the rising of the 
effective jet centre-line. In this section, the output of the empirical equation for (Y/S)~ 
(equation (18)) is compared with the results of an equation describing the rising of the 
centre-line of a jet in crossflow (Abramovich 1960) : 

(T) 5’ + xo” = (&)1.3(g)3+ (5) COt01‘. 

Here x: is the virtual origin for the effective jet action, D is the diameter of a single 
jet, and a’ is the injection angle. The solution of this equation depends on four para- 
meters: xi, D, M and a‘. The last three are supplied by the problem physics, and the 
only unknown is the virtual origin, which can be calculated from the empirical input, 
i.e. from the initial value of (y/6),, assuming that effective jet spread occurs according 
to the equation (41). 

The results of the virtual origin calculation are : 

for M = 0.4, xi = 0.13m; 

for M = 0.9, xi = 0.055m. 
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Then, with these results and from (41), the spreading of the jets can be calculated and 
compared with the present model values of (y/S),. The results are shown in table 2. 
As is seen again, the comparison is not bad. This supports the argument that (y/S), 
point moves out with distance similar to the jet centre-line. 

The following changes can be made in the model to replace the constant C, with the 
more accepted empirical equation; or with this physically supporting agreement, the 
old model for (y/S), can be left as it is. The change is as follows. Calculate 

Then 

i. initial K 

Yinitisl= 8 (i) 
i, initial 

Calculate from +- cot a’. 
D 

(43) 

(44) 

Then calculate new yi’s from (41). 

4.3. Other changes suggested 
To include the effect of PID (pitch-to-diameter ratio), the blowing ratio M in the 
formulae can be replaced by 

or by 

Here F’ reflects the relative effects of the jet and free-stream momentum. Itisthought 
that it will be better toreplace M by F‘;  by inclusion of an empitical jet-spreadequation, 
the variation in the injection angle (a’) could also be represented in the model. 

5. Summary of important points 
The important points in this work can be summarized as follows. 
(a) The flow in the recovery region can be described in terms of a two-layer model : 

an outer boundary layer where the length-scale scales on the total thickness of the 
layer, and an inner layer where the mixing length is the usual ~g and AS. The two layers 
blend into each other with the spreading of jets. Recovery to a two-dimensional 
boundary layer is completed when the inner and outer layers finally merge. 

( b )  A one-equation model of turbulence can be used in a two-dimensional finite- 
difference boundary-layer computer program to predict the mean velocity and TKE 
profiles in the recovery region. The one-equation model used here employs the TKE 
conaervation equation with an algebraic relationship for the mixing length. Mixing- 
length values calculated from the data were input to the program using a piecewise 
continuous, heuristic fit consistent with the concept of the two quasi-independent 
layers observed in the recovery region. This mixing-length pattern, used with a set of 
otherwise normal constants (for two-dimensional boundary-layer predictions), suc- 
cessfully predicted all the spanwise-averaged features of the flow. This strongly 
suggests that all of the principal mechanisms were modelled adequately by the mixing- 
length formulation. 
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(c)  It has been shown that the piecewise continuous, heuristic model can be replaced 
by a set of relations taken from the literature describing the spreading of jets and the 
growth of boundary layer&, thus supporting the physical arguments behind the mixing- 
length model. 
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